Spectral geometry of harmonic maps into warped product manifolds II
نویسندگان
چکیده
منابع مشابه
Spectral Geometry of Harmonic Maps into Warped Product Manifolds Ii
Let (Mn,g) be a closed Riemannian manifold and N a warped product manifold of two space forms. We investigate geometric properties by the spectra of the Jacobi operator of a harmonic map φ : M → N . In particular, we show if N is a warped product manifold of Euclidean space with a space form and φ,ψ : M → N are two projectively harmonic maps, then the energy of φ and ψ are equal up to constant ...
متن کاملBiharmonic Maps between Doubly Warped Product Manifolds
In this paper biharmonic maps between doubly warped product manifolds are studied. We show that the inclusion maps of Riemannian manifolds B and F into the doubly warped product f B ×b F can not be proper biharmonic maps. Also we analyze the conditions for the biharmonicity of projections f B ×b F → B and f B ×b F → F , respectively. Some characterizations for non-harmonic biharmonic maps are g...
متن کاملHarmonic morphisms of warped product type from Einstein manifolds
Weitzenböck type identities for harmonic morphisms of warped product type are developed which lead to some necessary conditions for their existence. These necessary conditions are further studied to obtain many nonexistence results for harmonic morphisms of warped product type from Einstein manifolds. Mathematics Subject Classification (2000). 58E20, 53C20, 53C25.
متن کاملf -BIHARMONIC MAPS BETWEEN DOUBLY WARPED PRODUCT MANIFOLDS
A. In this paper, by applying the first variation formula of f -bi-energy given in [OND], we study f -biharmonic maps between doubly warped product manifolds M ×(μ,λ) N. Under imposing existence condition concerning proper f -biharmonic maps, we derive f -biharmonicity’s characteristic equations for the inclusion maps: iy0 : (M, g) → (M ×(μ,λ) N, ḡ), ix0 : (N, h) → (M ×(μ,λ) N, ḡ) and th...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: International Journal of Mathematics and Mathematical Sciences
سال: 2001
ISSN: 0161-1712,1687-0425
DOI: 10.1155/s0161171201007098